

A Globally Convergent Cutting-Plane Method for Simulation-Based Optimization with Integer Constraints

Prashant Palkar, Jeffrey Larson, Sven Leyffer, Stefan Wild

Argonne National Laboratory

March 26, 2018

- Continuous design parameters: tower height, receiver diameter, receiver height, ...
- ► Integer design parameters: number of O&M staff, wash crews, and receiver panels

Unrelaxable MIP-DFO

- Unrelaxable integer variables
- ightharpoonup Computationally expensive simulation S(x)

Problem formulation

Derivative-Free Optimization with Unrelaxable Integers

$$\underset{x}{\text{minimize}} \ f(S(x)) \quad \text{subject to } x \in X \subset \mathbb{Z}^p \times \mathbb{R}^q$$

- 1. Evaluation involves S(x) numerical simulation (computationally expensive)
 - derivatives $\nabla_x S$ unavailable or expensive to compute
 - single evaluation of S(x) can take minutes/hours/days
 - ⇒ cannot use Outer Approximation
- 2. Unrelaxable integers, e.g. # receiver panels
 - Unrelaxable: simulation cannot run at fractional values!
 - ⇒ cannot use Branch-and-Bound

Problem formulation

Derivative-Free Optimization with Unrelaxable Integers

$$\underset{x}{\text{minimize}} \ f(S(x)) \quad \text{subject to } x \in X \subset \mathbb{Z}^p \times \mathbb{R}^q$$

- 1. Evaluation involves S(x) numerical simulation (computationally expensive)
 - derivatives $\nabla_x S$ unavailable or expensive to compute
 - single evaluation of S(x) can take minutes/hours/days
 - ⇒ cannot use Outer Approximation
- 2. Unrelaxable integers, e.g. # receiver panels
 - ▶ Unrelaxable: simulation cannot run at fractional values!
 - ⇒ cannot use Branch-and-Bound

Open problem (MINLP Oberwolfach, 2015)

Solve MI-DFO for convex f(S(x)) without complete enumeration!

Pattern-search for continuous DFO

Positive spanning set of directions Select step $\Delta > 0$ and starting point x repeat From x, search positive-spanning set of step Δ if better point \hat{x} found then Set $x := \hat{x}$: Increase Δ else Decrease Δ until convergence;

Convergence depends on spanning set properties and smoothness of the function.

Proposed by Audet & Dennis (2001):

User-defined discrete neighborhood

Proposed by Audet & Dennis (2001):

- User-defined discrete neighborhood
- ▶ Declare "mesh-isolated minimizer" if no local improvement

Proposed by Audet & Dennis (2001):

- User-defined discrete neighborhood
- ▶ Declare "mesh-isolated minimizer" if no local improvement

Proposed by Audet & Dennis (2001):

- User-defined discrete neighborhood
- ▶ Declare "mesh-isolated minimizer" if no local improvement

Proposed by Audet & Dennis (2001):

- User-defined discrete neighborhood
- ▶ Declare "mesh-isolated minimizer" if no local improvement

▶ Any $(y_1, y_2) \in \mathbb{Z}^2$ with $2y_1 = y_2$ is optimal

Discussion

Open problem

Can we guarantee a minimizer of a convex f(x) when x is integer?

$$\underset{x}{\operatorname{minimize}} \ f(x), \quad \text{subject to} \ x \in \mathbb{Z}^n$$

and assume f(x) convex

 $\underset{x}{\text{minimize}} \ f(x), \quad \text{subject to} \ x \in \mathbb{Z}^n$

and assume f(x) convex

 $\underset{x}{\operatorname{minimize}} \ f(x), \quad \text{subject to} \ x \in \mathbb{Z}^n$

and assume f(x) convex

 $\underset{x}{\operatorname{minimize}} \ f(x), \quad \text{subject to} \ x \in \mathbb{Z}^n$

and assume f(x) convex

... underestimator for convex, integer DFO!

Underestimating f

Formulate piecewise underestimator as MILP

- ▶ Interpolation points: $X := \{x^i \in \mathbb{Z}^n\}$, $|X| \ge n+1$
- ▶ Function values: $f^i := f(x^i)$ for $x^i \in X$
- $\pmb{i}:=(i_1,\ldots,i_{n+1})$ multi-index for n+1 distinct $i_j\in \pmb{i}$ with $1\leq i_1<\ldots,i_{n+1}\leq |X|$

Interpolation Cuts

For
$$X^{\pmb i}:=\left\{x^{i_j}:i_j\in \pmb i\right\}$$
 obtain cut $(c^{\pmb i})^Tx+b^{\pmb i}$... only valid in cones ... by solving linear system:

$$\left[X^{\boldsymbol{i}} \ e \right] \begin{bmatrix} c^{\boldsymbol{i}} \\ b^{\boldsymbol{i}} \end{bmatrix} = f^{\boldsymbol{i}},$$

Underestimating f

Lemma: Underestimating Property

f(x) convex and $X^{i} = \{x^{i_1}, \dots, x^{i_{n+1}}\}$ poised, then if follows that

$$f(x) \ge (c^{\boldsymbol{i}})^T x + b^{\boldsymbol{i}}, \qquad \forall \ x \in U^{\boldsymbol{i}} := \bigcup_{j=1}^{n+1} \operatorname{cone} \left(x^{i_j} - X^{\boldsymbol{i}} \right),$$

where cone $\left(x^{i_j}-X^{\pmb{i}}\right)$ is the cone with vertex $x^{i_j}\in X^{\pmb{i}}$ & rays $x^{i_j}-x^{i_l}$:

Modeling membership in cones (using $\eta \geq f(x)$ epigraph trick)

lacksquare Binary $z^{i_j}=1$ if and only if $x\in {
m cone}\left\{x^{i_j}-X^{m{i}}
ight\}, \ {
m for} \ i_j\in m{i}$

Modeling membership in cones (using $\eta \geq f(x)$ epigraph trick)

- ▶ Binary $z^{i_j} = 1$ if and only if $x \in \text{cone}\left\{x^{i_j} X^{\pmb{i}}\right\}$, for $i_j \in \pmb{i}$
- $\text{ Cut } \eta \geq (c^{\pmb{i}})^T x + b^{\pmb{i}} M_{\pmb{i}} (1 \sum_{i=1}^{n+1} z^{\pmb{i}j}) \text{ for big-} M_{\pmb{i}} > 0$

Modeling membership in cones (using $\eta \geq f(x)$ epigraph trick)

- ▶ Binary $z^{i_j} = 1$ if and only if $x \in \text{cone}\left\{x^{i_j} X^{\pmb{i}}\right\}$, for $i_j \in \pmb{i}$
- $\qquad \text{Cut } \eta \geq (c^{\pmb{i}})^T x + b^{\pmb{i}} M_{\pmb{i}} (1 \sum_{j=1}^{n+1} z^{i_j}) \text{ for big-} M_{\pmb{i}} > 0$
- ▶ SOS-1 constraint: at most one cone, $z^{i_j} \leq 1$, active

Modeling membership in cones (using $\eta \geq f(x)$ epigraph trick)

- ▶ Binary $z^{i_j} = 1$ if and only if $x \in \text{cone}\left\{x^{i_j} X^{\pmb{i}}\right\}$, for $i_j \in \pmb{i}$
- $\qquad \text{Cut } \eta \geq (c^{\pmb{i}})^T x + b^{\pmb{i}} M_{\pmb{i}} (1 \sum_{j=1}^{n+1} z^{i_j}) \text{ for big-} M_{\pmb{i}} > 0$
- ▶ SOS-1 constraint: at most one cone, $z^{i_j} \leq 1$, active
- Any point x is linear combination of extreme rays (W(X) set of all poised subsets)

$$x = x^{i_j} + \sum_{\substack{l=1,\\l \neq j}}^{n+1} \lambda_l^{i_j} (x^{i_j} - x^{i_l}), \quad \forall i_j \in \mathbf{i}, \ \forall \mathbf{i} \in W(X)$$

Modeling membership in cones (using $\eta \geq f(x)$ epigraph trick)

- ▶ Binary $z^{i_j} = 1$ if and only if $x \in \text{cone}\left\{x^{i_j} X^{\pmb{i}}\right\}$, for $i_j \in \pmb{i}$
- $\qquad \text{Cut } \eta \geq (c^{\pmb{i}})^T x + b^{\pmb{i}} M_{\pmb{i}} (1 \sum_{j=1}^{n+1} z^{\pmb{i}_j}) \text{ for big-} M_{\pmb{i}} > 0$
- ▶ SOS-1 constraint: at most one cone, $z^{i_j} \leq 1$, active
- Any point x is linear combination of extreme rays (W(X) set of all poised subsets)

$$x = x^{i_j} + \sum_{\substack{l=1,\\l\neq j}}^{n+1} \lambda_l^{i_j} (x^{i_j} - x^{i_l}), \quad \forall i_j \in \boldsymbol{i}, \ \forall \boldsymbol{i} \in W(X)$$

▶ Indicate $x \in \mathrm{cone}\left(x^{i_j} - X^{\pmb{i}}\right)$ by making $\lambda_l^{i_j} \geq -\pmb{M_\lambda}(1 - \pmb{z}^{i_j})$

Modeling membership in cones (using $\eta \ge f(x)$ epigraph trick)

- ▶ Binary $z^{i_j} = 1$ if and only if $x \in \text{cone}\left\{x^{i_j} X^{\pmb{i}}\right\}$, for $i_j \in \pmb{i}$
- $\qquad \text{Cut } \eta \geq (c^{\pmb{i}})^T x + b^{\pmb{i}} M_{\pmb{i}} (1 \sum_{j=1}^{n+1} z^{i_j}) \text{ for big-} M_{\pmb{i}} > 0$
- ▶ SOS-1 constraint: at most one cone, $z^{i_j} \leq 1$, active
- Any point x is linear combination of extreme rays (W(X) set of all poised subsets)

$$x = x^{i_j} + \sum_{\substack{l=1,\\l\neq j}}^{n+1} \lambda_l^{i_j} (x^{i_j} - x^{i_l}), \quad \forall i_j \in \boldsymbol{i}, \ \forall \boldsymbol{i} \in W(X)$$

▶ Indicate $x \in \text{cone}\left(x^{i_j} - X^{\pmb{i}}\right)$ by making $\lambda_l^{i_j} \geq -M_{\pmb{\lambda}}(1 - z^{i_j})$

... models $z^{i_j} = 1 \Rightarrow x \in \operatorname{cone}\left\{x^{i_j} - X^{i_j}\right\}$ for $i_j \in i$... reverse

Now to show
$$x \in \operatorname{cone}\left\{x^{i_j} - X^{\pmb{i}}\right\} \Rightarrow z^{i_j} = 1$$

 $lacksymbol{\lambda}_l^{i_j} \geq 0$ implies $w_l^{i_j} = 1$ and $\lambda_l^{i_j} \leq -\epsilon_{\pmb{\lambda}}$ implies $w_l^{i_j} = 0$

$$\lambda_l^{ij} \leq -\epsilon_\lambda + M_\lambda w_l^{ij}$$
 ...tiny- ϵ and big- M

... can choose optimal tiny- ϵ , big-M by solving LPs

 \triangleright At least one w variables is zero if corresponding z is zero:

$$nz^{i_j} \le \sum_{l=1, l \ne j}^{n+1} w_l^{i_j} \le n - 1 + z^{i_j}$$

MILP subproblem model

- ightharpoonup Check $\binom{|X|}{n+1}$ poised sets at iteration k
- Formulation needs $\mathcal{O}(n^2)$ binary variables per poised set

Challenges of MILP Master model

- ▶ MILP model exponential in number of interpolation points
- ▶ MILP representation is very weak: uses big-M and tiny- ϵ
- ⇒ Commercial solvers cannot solve large instances

Challenges of MILP Master model

- ▶ MILP model exponential in number of interpolation points
- ▶ MILP representation is very weak: uses big-M and tiny- ϵ
- ⇒ Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

- ► Key idea: work in space of original integers, $x \in \mathbb{Z}^n$ (no additional variables or constraints)
- ► Replace MILP by look-up-table of underestimator
- Update look-up-table when new points (and therefore new cuts) are available

Challenges of MILP Master model

- ▶ MILP model exponential in number of interpolation points
- ▶ MILP representation is very weak: uses big-M and tiny- ϵ
- ⇒ Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

- ► Key idea: work in space of original integers, $x \in \mathbb{Z}^n$ (no additional variables or constraints)
- Replace MILP by look-up-table of underestimator
- Update look-up-table when new points (and therefore new cuts) are available

Dense/small linear algebra solves ⇒ Fast

Challenges of MILP Master model

- ▶ MILP model exponential in number of interpolation points
- ▶ MILP representation is very weak: uses big-M and tiny- ϵ
- ⇒ Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

- ► Key idea: work in space of original integers, $x \in \mathbb{Z}^n$ (no additional variables or constraints)
- ► Replace MILP by look-up-table of underestimator
- Update look-up-table when new points (and therefore new cuts) are available

Dense/small linear algebra solves ⇒ Fast ...but not fast enough

input: Lower bound η for each point in Ω ; Points X with

$$|X| \ge n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$

input: Lower bound η for each point in Ω ; Points X with

$$|X| \ge n+1; \ \overline{f} = \min_{x_i \in X} f(x_i)$$

while $\bar{f} > \min \eta$ do

input: Lower bound η for each point in $\Omega;$ Points X with

$$|X| \ge n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$

while $ar{f} > \min \eta$ do

$$C = \{ \text{subsets of } n+1 \text{ points in } X \}$$

```
\begin{aligned} & \text{input: Lower bound } \eta \text{ for each point in } \Omega; \text{ Points } X \text{ with } \\ & |X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i) \end{aligned}  & \text{while } \bar{f} > \min \eta \text{ do}   & C = \{ \text{subsets of } n+1 \text{ points in } X \}   & \text{for } \pmb{i} \in C \text{ do}   & \text{if } X^{\pmb{i}} \text{ is poised} \qquad \text{then}   & \text{Find points in } \Omega \text{ in one of the cones of } X^{\pmb{i}}   & \text{Update } \eta \end{aligned}
```

```
input: Lower bound \eta for each point in \Omega; Points X with
         |X| \ge n+1; \bar{f} = \min_{x_i \in X} f(x_i)
while \bar{f} > \min \eta do
    C = \{ \text{subsets of } n+1 \text{ points in } X \}
    for i \in C do
         if X^{i} is poised
                                         then
              Find points in \Omega in one of the cones of X^{i}
              Update \eta
    Add x^k = \arg\min \eta and update \bar{f}
                  x \in \Omega
```

input: Lower bound
$$\eta$$
 for each point in Ω ; Points X with
$$|X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$
 while $\bar{f} > \min \eta$ do
$$C = \{ \text{subsets of } n+1 \text{ points in } X \}$$
 for $i \in C$ do
$$\begin{bmatrix} [Q,R] = \operatorname{qr}([e\ X^i]) \\ \text{if } X^i \text{ is poised using } R \text{ then } \\ \end{bmatrix}$$
 Find points in Ω in one of the cones of X^i using Q Update η
$$\operatorname{Add} x^k = \arg\min \eta \text{ and update } \bar{f}$$

input: Lower bound
$$\eta$$
 for each point in Ω ; Points X with
$$|X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$
 while $\bar{f} > \min \eta$ do
$$C = \{ \text{subsets of } n+1 \text{ points in } X \}$$
 for $i \in C$ do
$$\begin{bmatrix} [Q,R] = \operatorname{qr}([e\ X^i]) \\ \text{if } X^i \text{ is poised using } R \text{ then} \\ \end{bmatrix}$$
 Find points in Ω in one of the cones of X^i using Q Update η using Q Add $x^k = \underset{x \in \Omega}{\operatorname{arg min}} \eta$ and update \bar{f}

input: Lower bound
$$\eta$$
 for each point in Ω ; Points X with
$$|X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$
 while $\bar{f} > \min \eta$ do
$$C = \{ \text{subsets of } n+1 \text{ points in } X \}$$
 for $i \in C$ do
$$\begin{bmatrix} [Q,R] = \operatorname{qr}([e\ X^{\pmb{i}}]) \\ \text{if } X^{\pmb{i}} \text{ is poised using } R \text{ then } \\ \\ \text{Update } \eta \text{ using } Q \text{ where } \eta < \bar{f} \end{bmatrix}$$
 Add $x^k = \arg\min \eta$ and update \bar{f}

input: Lower bound
$$\eta$$
 for each point in Ω ; Points X with
$$|X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$
 while $\bar{f} > \min \eta$ do
$$C = \{ \text{subsets of } n+1 \text{ points in } X \}$$
 for $i \in C$ do
$$\begin{bmatrix} [Q,R] = \operatorname{qr}([e\ X^i]) \\ \text{if } X^i \text{ is poised using } R \text{ then } \\ \\ \end{bmatrix} \text{ Find points in } \Omega \text{ in one of the cones of } X^i \text{ using } Q$$

$$Update \ \eta \text{ using } Q \text{ where } \eta < \bar{f}$$

$$\text{Add } x^k = \arg\min_{x \in \Omega, \eta < \bar{f}} \eta \text{ and update } \bar{f}$$

```
input: Lower bound \eta for each point in \Omega; Points X with
          |X| \ge n+1; \bar{f} = \min_{x_i \in X} f(x_i)
while \bar{f} > \min \eta do
     C = \{ \text{subsets of } n \text{ points in } X \} \otimes \{x^k\}
     for i \in C do
         [Q, R] = \operatorname{qr}([e \ X^{i}])
         if X^{i} is poised using R then
               Find points in \Omega in one of the cones of X^i using Q
              Update \eta using Q where \eta < \bar{f}
     Add x^k = \arg\min \eta and update \bar{f}
                   x \in \Omega, \eta < \bar{f}
```

```
input: Lower bound \eta for each point in \Omega; Points X with
          |X| \ge n+1; \bar{f} = \min_{x_i \in X} f(x_i)
while \bar{f} > \min \eta do
     C = \{ \text{subsets of } n+1 \text{ useful points in } X \}
     for i \in C do
         [Q,R] = \operatorname{qr}([e\ X^{\imath}])
         if X^{i} is poised using R then
               Find points in \Omega in one of the cones of X^i using Q
              Update \eta using Q where \eta < \bar{f}
     Add x^k = \arg\min \eta and update \bar{f}
                   x \in \Omega, \eta < \bar{f}
```

input: Lower bound η for each point in Ω ; Points X with

$$|X| \ge n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$$

while $ar{f} > \min \eta$ do

Generate a sufficient set C of subsets of n+1 points for $i \in C$ do

$$[Q, R] = \operatorname{qr}([e \ X^{i}])$$

if X^i is poised using R then

Find points in Ω in one of the cones of $X^{\hat{i}}$ using Q Update η using Q where $\eta < \bar{f}$

 $\operatorname{Add} \, x^k = \mathop{\arg\min}_{x \in \Omega, \eta < \bar{f}} \eta \text{ and update } \bar{f}$

input: Lower bound η for each point in Ω ; Points X with $|X| \geq n+1; \ \bar{f} = \min_{x_i \in X} f(x_i)$

while $\bar{f} > \min \eta$ do

Generate a sufficient set C of subsets of n+1 points for $i \in C$ do

$$[Q, R] = qr([e X^{i}])$$

if X^{i} is poised using R then

Find points in Ω in one of the cones of $X^{\hat{i}}$ using Q Update η using Q where $\eta < \bar{f}$

Add $x^k = \underset{x \in \Omega, \eta < \bar{f}}{\arg\min \eta}$ and update \bar{f}

Open problem

Given a set of points X on the integer lattice, is there a way to generate all subsets of size n+1 without another in the interior?

Convex quadratic for which pattern-search failed \dots n=3

Convex quadratic for which pattern-search failed \dots n=3

Convex quadratic for which pattern-search failed $\dots \\ n=4$

Convex quadratic for which pattern-search failed $\dots \\ n=4$

Future

- ▶ We likely aren't using convexity as much as we possibly can.
- ▶ How to certify (local) optimality when f is nonconvex?